
Introduction

Osteoporosis is a leading cause of morbidity and mortality in
the elderly, and is an increasing drain on healthcare resources
(over 1 billion pounds in the UK) (1, 2). The major clinical
effect is bone fracture, especially of the femur, but also of
vertebrae and the radius, causing pain, disability and loss of
independence, and often a rapid sequence of events leading to
death (1-5).

The aetiology of osteoporosis is multifactorial, and although
genetic and hormonal factors strongly influence the rate of
decline of bone mass with age, nevertheless poor nutrition,
smoking and excessive alcohol use, and lack of physical
exercise all also greatly affect it (1, 3-7). Although ideally these
non-genetic factors could be altered, in practice this is difficult,
and hence drugs are extensively used to try to slow, or reverse,
osteoporosis, now chiefly calcium and vitamin D
supplementation, bisphosphonates and oestrogens, and
oestrogen receptor modulators (5, 8-11). Osteoporosis is an
imbalance between bone resorption by osteoclast cells and bone
formation by osteoblasts (2, 12) - oestrogens and
bisphosphonates slow bone resorption, by reducing bone
turnover, but few drugs (rhPTH, strontium renelate and sodium
fluoride being exceptions) can increase osteoblast activity and
hence bone formation (2).

There has also been interest in other bone minerals
(magnesium, potassium and fluoride) and nutritional trace
elements (zinc, copper, boron and manganese) in the diet; their
intake is positively associated with bone mass, while deficiency
has been correlated either with reduced bone mass or slow
healing of fractures (6, 7, 12-14). Zinc, copper and manganese
are essential cofactors for enzymes involved in the synthesis of
the constituents of bone matrix (6, 7). 

Another trace element that may be important is silicon (Si),

but although there is 1-2 g present in the body (the most
abundant trace element after iron and zinc, two other elements
of physiological importance) its function is still surprisingly
unclear. Silicon was long thought to be an inert universal
contaminant that ‘washes through’ biology with no biological
or toxicological properties; “a fortuitous reminder of our
geochemical origin or an indicator of environmental exposure”
(15). Animal studies in the 1970’s reported that dietary silicon
deficiency produces defects in connective and skeletal tissues
(16-18), and that silicon is concentrated at the mineralisation
front of growing bone (18). Work over the last 30 years has
added to these findings to suggest that dietary silicon may be
important, or at least beneficial, for bone formation and to bone
health. This review gives an overview of silicon, human
exposure to this element, its metabolism and the evidence of its
potential role in bone health. 

Silicon

Silicon (Si) is a non-metallic element with an atomic weight
of 28. It is the second most abundant element in the Earth’s
crust at 28 wt %, (19, 20) but it is rarely found in its elemental
form due to its great affinity for oxygen, forming silica and
silicates, which at 92%, are the most common minerals. Quartz
(12%) and the aluminosilicates, plagioclase (39%) and alkaline
feldspar (12%) are the most prevalent silicates (21). These are
present in igneous and sedimentary rocks and soil minerals and
are highly stable structures that are not readily broken down
except with extensive weathering. Thus natural levels of
soluble (available) silica are low. Chemical and biological
(plants, algae and lichens) weathering, however, releases
silicon from these stable minerals, increasing its bioavailability.
Dissolution of Si, from soil minerals in water results in the
formation, by hydrolysis, of soluble silica species. Below pH 9,
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and at a total Si concentration below 2 mM, silicon is present
predominately as Si(OH)4 the most stable specie at low Si
concentration. This monomeric form of silica, ‘monomeric
silica’, is water soluble and a weak acid (pKa of 9.6), thus also
referred to as ‘monosilicic acid’ or ‘orthosilicic acid’ (22). At
neutral pH, this tetrahedral, uncharged (i.e. neutral) species is
relatively inert, but does undergo condensation reactions
(polymerisation) to form larger silica (polysilicic acid) species,
especially at Si concentrations > 2-3 mM. Indeed, only in very
dilute solutions, it is suggested, that the monomer will be found
in its pure form, as often the dimer [(HO)3Si-O-Si(OH)3] is also
present (but never > 2%), even in solutions greatly below 2 mM
Si (22, 22). Above 2 mM Si, Si(OH)4 undergoes polymerization
to form small oligomers (linear and cyclic trimers and tetramers
or cyclic decamers) and, at concentration much above 2 mM,
small colloidal species will also be present, which upon
aggregation will eventually results in the formation of an
amorphous precipitate, which at neutral pH (pH 6-7) is a gel
(20, 22-24). Thus polymerisation of Si(OH)4 reduces its

solubility and hence bioavailability. 
Silicon also exists as ‘organo-silicon’ compounds or

silicones, but these synthetic (man-made) compounds are rarely
found in the diet and in nature in general. Silicon as Si(OH)4 is
inert and until recently was suggested not to take part in any
chemical or biological interactions, even though it is known to
be actively taken up and transported by some primitive
organisms and plants to form elaborate silica exoskeletons and
biogenic silica, respectively, and the formation of which is
assisted and controlled by proteins and polysaccharides (25-
27). Recently Kinrade et al (28, 29) reported that Si(OH)4

interacts readily with alkyl diols of sugars to form five and six-
coordinate Si complexes suggesting that interactions with bio-
molecules is possible. 

Human exposure to silicon

Human are exposed to numerous sources of silica/silicon
including dust, pharmaceuticals, cosmetics and medical
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Table 1
Human exposure to silicon

Sources Exposure Levels Comments

Soil 28% of the Earth’s crust Locked up in minerals (e.g., quartz, aluminosilicates). Inert, insoluble and very 
little is bioavailable (even to plants). Only released with weathering.

Dust No data avilable. Wide variety and forms (crystalline and amorphous). Inhaled; not readily 
solubilised; retained in the lungs and does not participate in the general 
metabolism of Si in the body.

Water 0.8-35 (median: 6.2) mg/L (freshwater) Most readily bio-available source (50-80%), as Si present as soluble OSA. 
0.001-0.3 mg/L (marine) Intake can make up 20-30% of daily Si intake, may be higher from mineral 

waters.
0.2-14 mg/L (tap)
4-40 mg/L (mineral/spring)

Diet 13-62 mg/d (Western countries) Major contribution from plant-based foods (cereals, grains and some fruits & 
143-204 mg/d (India) vegetables) and little from dairy and meat. Mean bioavailability is ~41%. 
139 mg/d (China) Cereals, grains & products: 49±34%; Fruits & vegetables: 21±29% (bananas: 

2.1%) 
Dietary additives < 2% food weight (UK) Silicates (Mg, Ca & Al). Extracted from natural minerals or synthetics. Suppose 

to be inert and not absorbed from the GI tract.
Dietary supplements Variable: 0.02 to 60 mg/g. Colloidal, gels, plant-based, etc. Bioavailability is low, << 20% for most;

Horsetail 9-17 mg/g BioSil (stabilised-OSA; BioMinerals NV, Belgium), ~30%; Monomethyl-
trisilano (LLR-G5, Ireland) is similar to OAS, at least 50% bioavailable. 

Pharmaceuticals Main components of antacids Can greatly increase exposure (> 1g/d) but are suppose to be inert & not 
(Mg2Si3O3; 250 mg/g), absorbed. 5-10% at most is absorbed. Long term use can lead to silica stones and 

anti-diarrhoeal (Al & Mg silicates; kidney damage (Dobbie and Smith 1982).
80% wt), and as excipients in 
proprietary analgesics

Cosmetics/ No data available. Toothpaste, creams (silicones), lipstick, coloured/powdered cosmetics & 
Toiletries Excipients and viscosity agents. talcum powder (Mg hydrogen silicate). Dermal absorption suggested to be low 

as silicates are not lipid soluble, but silicones in hand and nail creams are. 
Dermal absorption of aluminosilicates is linked to podoconiosis an 
inflammatory disease.

Other sources No data available Exposure is low/minor for most individuals.
(e.g, detergents, 
tissue implants, etc.)
OSA= orthosilicic acid; GI= gastrointestinal



implants and devices (see Table 1), but the major and most
important source of exposure for the majority of the population
is the diet. 

Dietary sources
Dietary intake of Si is between 20-50 mg Si/day for most

Western populations (30-33); ≥ 2-fold higher than typical
intake of iron and zinc. Higher intakes (140-204 mg/day) have
been reported in China and India where plant-based foods may
form a more predominant part of the diet (34, 35). The intake
within different age groups is not well documented (33). It
appears to be similar for children (27 mg/day) and adults (29
mg/day) in Finland, although their major sources of intake are
different (32). In children the major source is from cereals
(68% of total dietary intake), whereas the major source in adult
males is from beer ingestion (44%) (30, 32). Intake in females
is lower than in males, which is due to the higher intake of beer
in males (30, 32, 36). Beer is a highly bioavailable natural
source of silicon (see below). Intake also decreases
significantly with age in adults (0.1 mg for every additional
year) (30, 33).

Drinking water
Silicon in drinking water is derived from the weathering of

rocks and soil minerals and since different types of minerals
weather at different rates, the concentration of Si in water is
dependent upon the surrounding geology. In the UK for

example, Si concentrations are low (0.2-2.5 mg/L) in the north
and west of Britain (‘highland’ Britain), where the rocks are
‘old’ and well-weathered (37-39), and the water is naturally
soft (37). In contrast, Si levels are much higher (2.8-14 mg/L)
in the south and east of Britain (‘lowland’ Britain) from the
weathering of ‘young rocks’; the water is naturally hard as it is
high in dissolved solids and is also alkaline (37, 38, 40, 41).
The Si concentration of European mineral waters is within a
similar range (4-16 mg/L) to lowland drinking waters and their
pH is typically around neutral, or slightly above. Recently,
however, higher levels (30-40 mg/L) have been reported in
Spritzer and Fiji mineral waters, from natural sources in
Malaysia and Fiji respectively.

Drinking water and other fluids provides the most readily
bioavailable source of Si in the diet, since silicon is principally
present as Si(OH)4, and fluid ingestion can account for ≥ 20%
of the total dietary intake of Si (42). 

Food sources
Silica in food is derived from natural sources, including

adherent soil particles on surfaces of vegetables and from its
addition as additives (see below). Natural levels of Si in food
are much higher in plant derived foods than meat or dairy
products (Table 2). Plants take up and accumulate Si from soil
and soil solutions that becomes incorporated as a structural
component conferring strength and rigidity to stalks, for
example, in grasses and cereals and also in some plants such as
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Table 2
Food sources of silicon

Food Groups Si (mg/100g) Range Comments

Cereals Grains & Products 7.79 ± 6.31 1.34−23.36 11 of the 18 foods with high Si content (> 5mg/100g) are from this    
Breakfast Cereal (n=16) 2.87 ± 1.60 0.34−6.17 group. Silicon is almost solely present in the outer skin (husks/hull)
Bread/Flour (n=15) 1.56 ± 0.56 1.05−2.44 of the grain. Oat bran has the highest Si content as it consist
Biscuit (n=5) 1.54 ± 1.00 0.88−3.76 of the husk/hull. 
Rice (n=8) 1.11 ± 0.47 0.62−1.84
Pasta (n=7)

Fruits 1.34 ± 1.30 0.1−4.77 Bananas, pineapples and mangoes are high.
Raw& canned  (n=33) 10.54 ± 5.44 6.09−16.61
Dried (n=3)

Vegetables (n=49) 1.79 ± 2.42 0.1−8.73 High in Kenyan beans, green beans, runner beans, spinach and 
coriander.

Legumes (lentils, pulses, 1.46 ± 1.23 0.38−4.42 Lentils and Soya/tofu are high.
etc.; n=11)
Nuts & Seeds (n=4) 0.78 ± 0.82 0.28−1.99
Snack Foods (crisps, candy, 1.97 ± 2.15 0.47−1.01
etc; n=3)
Milk & Milk Products 0.31 ± 0.21 0.07−0.47 Low Si content
(TDS & n=3)
Meat & Meat Products (TDS) 0.1−1.89 Low Si content

Table adapted from Powell et al. (44); TDS= Sample four the Food Standard Agency total diet study



horsetail (Equisetum arvensa) where Si is essential (41, 43).
Such plants, termed ‘Si accumulators’, are generally the
monocotyledons, which include the cereals, grasses (e.g. rice)
and some herbaceous plants. These accumulate some 10-20
times more Si than the dicotyledons (e.g. legumes). Indeed,
some monocotyledons, such as rice, actively take up and
transport Si and silicon-related genes have been recently
identified. Plants produce biogenic (phytolithic) silica which is
often associated with the polysaccharide/carbohydrate
components of the cell wall. 

High levels of Si are found in unrefined (‘whole’) grains
such as barley, oats, rice bran and wheat bran (32, 44-46). Upto
50%, of the Si is present in the hulls and husks. Rice hulls, for
example, contain 110 mg Si/g, and during
manufacturing/industrial treatment these are removed which
reduces Si in the refined foods. However, grain products such
as breakfast cereals, flour and bread, biscuit, rice, pasta, cake
and pastry etc., are still high dietary sources of Si (32, 44, 45)
(see Table 2). Barley and hops are used in making beer and the
mashing process breaks down their phytolythic silica, into
soluble forms, so this beverage is high in Si (32, 44, 47, 42)
(Table 3). In comparison wines and liquor/spirits have lower
levels of Si (44) (Table 3). Sugar cane also actively takes up Si
and refined and unrefined sugars are also high in Si (32, 44).

High natural levels of Si are also present in some vegetables,
namely beans (green, Kenyan, French), spinach and root
vegetables and some herbs (32, 44). Fruits contain low levels of
Si except for bananas and dried fruits and nuts. However, very
little Si is digested in the gut and made available from bananas
(<2%) (30). 

Seafood is also high in Si with mussels having the highest
levels (32). Animal and dairy products are low in Si (44) (Table
2), higher levels are found in offal and the less popular food-
parts, such as the brain, heart, liver, lung and kidney (32). High
levels of Si are also present in arteries, where it maintains the

integrity of the lining of the aortic tissue (termed the tunica
intima) (48).

Additives
As noted above, Si is also added to manufactured and

processed foods as additives, increasing the Si content of these
foods. Commonly, this is in the form of silicates such as
calcium silicate, sodium aluminosilicate, magnesium hydrogen
metasilicate (talc), magnesium trisilicate, calcium aluminium
silicate, bentonite and kaolin (49, 50). These silicates are either
extracted from their naturally occurring minerals or produced
synthetically with tailored properties, namely a high surface
area with hygroscopic properties (37). Silicates are thought to
be inert and not absorbed in the gastrointestinal tract (37, 49),
and, under UK regulations governing silicate additives, are
added at less than 2% of the weight of the food (37). Silicates
are used as anticaking agents for better flow and storage
properties, as thickeners and stabilizers, as clarifying agents in
beer and wine, as glazing, polishing and release agents in
sweets, as dusting powder in chewing gum and as coating
agents in rice (32, 50-52). Silicate additives are thought to be
inert and not readily absorbed from the gastrointestinal tract. 

Supplements
Silicon is also available as a food supplement in tablet and

solution forms. These show varying bioavailability (<1 to
>50%) and most show negligible-low bioavailability. Biosil®
or choline-stabilised orthosilicic acid (BioMineral NV,
Destelbergen, Belgium), is a concentrated solution of
orthosilicic acid (2% solution) in a choline (47%) and glycerol
(33%) matrix. This is promoted as ‘biologically active silicon’
and studies in man have suggested that it is a readily
bioavailable source of Si (53) and biologically active (54-56).
Silica+® (Pharmafood, Belgium) is made from the dry extract
of horsetail and contains 12 mg Si per tablet, of which 85% is

SILICON AND BONE HEALTH

The Journal of Nutrition, Health & Aging©
Volume 11, Number 2, 2007

102

Table 3
Silicon in beverages

Food Groups Si (mg/100g) Range Comments

Beverages (non-alcoholic)
Tap water (n=11) 0.37 ± 0.13 0.095−0.61 Mineral waters > tap water 
Mineral & Spring waters n=14) 0.55 ± 0.33 0.24−1.46 Tap waters > carbonated drinks 
Tea & Coffee (n=6) 0.51 ± 0.28 0.24−0.86
Fruit juices (n=11) 0.38 ± 0.53 0.05−1.5
Fizzy/Carbonated (n=6) 0.15 ± 0.04 0.11−0.19
Milk based (n=6) 1.30 ± 1.40 0.2−3.96

Beverages (alcoholic)
Beers (n=76) 1.92 ± 0.66 0.9−3.94 No correlation with alcohol content, type of beer, type of 
Wines (n=3) 1.35 ± 0.85 0.68−2.31 storage/packaging  or geographic origin (Sripanyakorn et al., 
Port/Sherries (n=2) 1.24_1.26 2004).
Liquor/Spirits (n=11) 0.13 ± 0.04 0.06−0.20

Table adapted from Powell et al. (44)



suggested to be bioavailable. However, studies conducted in
man have shown it to be significantly less bioavailable than
Biosil® (57). Other supplements available over the counter
include Silicea (silicon dioxide; Weleda, UK), Silicol (colloidal
silica gel; Saguna, Germany), Silica (silicon dioxide; New Era,
UK), Horsetail (horsetail extract; Good n’Natural, UK) and G5
(monomethyl trisilanol in solution; LLR-G5, Ireland). 

Data from The Third National Health and Nutrition
Examination Survey (NHANES III, 1984-1988) estimated the
median intake of Si from supplements to be 2 mg/d (33). The
main users of Si supplements were adults (19 y +).

Non-dietary sources

Pharmaceuticals
Silicon is present in some pharmaceuticals. Silicic acid and

sodium silicates were administered, orally or intramuscularly,
as possible treatments for pulmonary tuberculosis and
atherosclerosis in Germany in the early part of this century
(37). Later, a silica found in bamboo, was also used as a
possible treatment for asthma and tuberculosis (22). In modern
pharmaceuticals Si is present mainly in antidiarrhoeals,
antacids and in proprietary analgesics such as aspirin. In
analgesics, silicates (magnesium silicate and magnesium
trisilicates) are present as excipients, which are inert ingredients
that hold the other ingredients together, or as desiccants, if the
active ingredient is hygroscopic (37, 52, 58). The levels of
silicates in these drugs, however, are not well documented and
bioavailability is suggested to be negligible. Abusive use,
however, can cause inflammation of the kidneys termed
‘analgesic nephropathy’, but it is unclear if this is related to the
active ingredient or the excipient (37).

Cosmetics
Silicon is also present in cosmetics and toiletries as a

viscosity control agents and as an excipient (52, 59). Silica and
silicates (e.g. hydrated silica and magnesium aluminium
silicate) are present in toothpaste, creams, lipstick and coloured
cosmetics (52, 60). Silicates are also likely to be present, as an
excipient, in powdered cosmetics, while in talcum powder the
main ingredient is magnesium hydrogen silicate. Phytolithic
silica may be present, as a contaminant, in facial scrub and
shampoos as often these are plant based, while silicones may be
present in some hand and nail creams and in nail varnish.

Dermal absorption of silica/silicates is not well documented
and it is thought to be negligible as these compounds are not
lipid soluble. In contrast, silicones, in hand and nail creams, for
example, are suggested to be readily absorbed.

Gastrointestinal absorption

The main route of entry of silicon in to the body is from the
gastrointestinal tract. Indeed, urinary excretion of Si, a good
marker of absorbed Si, correlates with dietary intake of Si (30,

61-63). However, the gastrointestinal absorption, metabolism
and excretion of silicon is still poorly understood. There are
only a few studies investigating the gastrointestinal
bioavailability of Si from food, beverages or pharmaceuticals
(30, 46, 47, 53, 57, 62-68).

The absorption of silicon, however, is strongly influenced by
the form of silica ingested and this is related to the rate of
production of soluble and absorbable species of silica in the
gastrointestinal tract (30, 53, 64, 69). Biogenic/phytolithic silica
is present in plant derived foods, and since these are largely
insoluble forms of Si, they were thought to be relatively
unavailable (32, 42, 53, 57, 70) until recently (30, 61, 62).
However, a mean 41% of ingested Si is absorbed from solid
foods and generally the Si content of the food is a marker of its
uptake (30), suggesting phytolithic silica is broken down and
absorbed. Absorption however requires their breakdown to
much smaller soluble species such as orthosilicic acid (30, 61,
62). 

Orthosilicic acid is the major silica species present in
drinking water and other fluids/beverages, including beer, so
these provide the most available source of silicon to man. It is
readily absorbed and excreted; at least 50% of intake (30, 33,
42, 47, 62, 67).

Silicate additives are also present in foods and beverages. As
with pharmaceuticals these are added as inert additives or
excipients and are thought not to be absorbed. A number of
studies, in man and animals, however, have reported marked
increases in serum Si concentration or excretion of Si in urine
(5-56%) following ingestion of silicates (zeolite A (an
aluminosilicate), sodium aluminosilicate, or magnesium
trisilicate) suggesting that these are partly solubilised to
orthosilicic acid in the gastrointestinal tract and absorbed (63,
65, 68). 

The mechanism of gastrointestinal uptake of silica is not
known, but the silica species in the gastrointestinal tract
influences its absorption (64), as noted above. Simple
uncharged species such as orthosilicic acid will interact very
weakly, or not at all, with the mucosally-bound mucus layer,
thus will be readily mobile and will permeate easily across the
mucus layer. Indeed, orthosilicic acid is readily and rapidly
absorbed and excreted in urine, and uptake occurs
predominately in the proximal small intestine (62, 64). This is
likely to be by the paracellular pathway or small-pore
transcellular pathway and is unlikely to be energy dependent. In
contrast, charged polymeric silica species will either interact
more strongly with the mucus layer, through cation bridges, and
thus be less mobile, and/or will be too large to permeate
through the mucus layer. Thus, polymeric/colloidal species of
silica that are not readily broken down in the gastrointestinal
tract will not be significantly absorbed and will be excreted in
faeces (64). Other factors that may affect the absorption of
silica are discussed below.

Fibre. Kelsay et al. (46), demonstrated that a high fibre diet
(fruit and vegetables) reduces the gastrointestinal uptake of
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minerals, including Si. Urinary excretion of Si was 35%
compared with 58% from a low fibre diet; while faecal
excretion was 97% and 67% respectively. Both diets, however,
produced a negative Si balance, although, this was more
negative with the high fibre diet (-14.6 mg/day compared with -
3.5 mg/day).

Dietary cations. Carlisle (68), found the silica
supplementation to be more effective when rats were fed a low
calcium diet, and Nielsen (15), suggested that low dietary
calcium enhances the uptake of silica. These results, suggest
that, either calcium and silica compete for the same absorption
pathway, or that calcium forms insoluble, luminal calcium
silicate that reduces silica bioavailability. Magnesium could
similarly reduce the bioavailability of silica by forming
insoluble silicates, since magnesium orthosilicate is considered
the predominant form of silica in urine and possibly in plasma
(71). Charnot and Pérès (72), suggested that silica controls the
metabolism of calcium and magnesium. 

Age. Reduced gastric acid output, as occurs with ageing, is
suggested to reduce the ability to metabolise dietary silica.
Thus, the gastrointestinal absorption of Si may decrease with
ageing (49). Gut permeability, however, increases with ageing,
but this is unlikely to significantly enhance Si absorption which
is already high. In addition Si intake also seems to decrease
with ageing (30, 33). We recently, however, found no marked
significant differences in the absorption of Si between young
(<40 y old) and elderly (>60 y old) men and women
(Sripanyakorn et al., unpublished data).

Endocrine function. Charnot and Pérès (72) suggested that Si
metabolism is controlled by steroid and thyroid hormones and
that inadequate or reduced hormone or thyroid activity, as
occurs with ageing, decreases silica absorption.

Silicon excretion

Silicon absorbed across the intestinal mucosa reaches the
blood circulation, but it is not known whether any absorbed
silica is retained by the mucosal cells, as occurs with some
metal cations, although this is likely to be small. In blood, Si
elutes with the non-protein bound fraction suggesting that silica
does not associate with plasma proteins or that it forms a weak,
easily disassociated interaction (73). Silica will be present as
the neutral orthosilicic acid species which readily diffuses into
erythrocytes and other tissues (74), but may also be present as
silicates (73) such as magnesium orthosilicate (71).

The main route of excretion of absorbed silica is via the
kidneys into urine. Indeed, renal function appears to be an
important determinant of plasma Si concentration and with
impaired renal function, as seen in uraemic patients for
example, plasma Si concentration is significantly elevated
compared with normal healthy subjects (3.8 ± 1.74 mg/l vs 0.16
± 0.04 mg/l in healthy subjects) (40, 41, 70, 73, 75). Both
plasma and urinary Si levels correlate with creatinine clearance
(61, 62, 76, 77). Berlyne et al. (76) also found that urinary Si

correlates with calcium and magnesium levels in urine, again,
suggesting that Si may be present as calcium and magnesium
silicates. High levels of Si are present in the liver following
intracardiac injection of silica in rats, so absorbed silica could
also be excreted in bile, and subsequently eliminated in faeces
(74). However, this is unlikely to be significant as absorption of
Si into serum (area under the curve) correlates significantly
with its excretion in urine (61, 62). Furthermore, silicic acid is
water soluble and bile is an excretory pathway of lipid soluble
molecules. Finally, renal and not biliary or gall bladder stones
occur with long-term excessive Si intake.

As silicon is not associated with plasma proteins, it is readily
filtered by the renal glomerulus (73, 74), and is eliminated with
little tubular re-absorption (71). Much of the absorbed silica is
eliminated within 4-8 hr following its ingestion
(30,47,61,62,64). Indeed, the renal clearance of Si, is high (82-
96 ml/min) (61,62). However, absorbed silica is also likely to
be taken up by tissues which may delay its total elimination
from the body. Thus, studies in rats, with the 31Si isotope
injected intracardially, have demonstrated that most of the Si is
readily eliminated from plasma into urine (77% of ingested
dose by 4 hr), but some is also distributed between a number of
organs, including bone, skin, muscle and testes, but not the
brain (78,79). Highest levels of 31Si were found in the kidneys,
liver and lungs (78); these were six fold higher compared to the
concentration in plasma collected at the same time period. The
one study in man, using the 32Si radioisotope, showed that 36%
of the oral dose was absorbed and eliminated in urine and
although there was no evidence of retention, this was not a
balance study as faecal excretion was not measured (65). The
possibility, therefore, that some silicon was retained can not be
excluded. The only documented balance study in man,
investigating Si (46), found a negative Si balance, indicating
the difficulty of undertaking such studies. Schwarz and Milne
(16) suggested that in healthy, non-silicon deficient animals it
is unlikely for Si to be accumulated. However, Si appears to be
present in all tissues, including the brain (12-27 µg/g), and the
total body burden is several grams, suggesting that at least
some ingested Si is accumulated (68,70,73,75,80,81).

Tissue distribution

As noted above, some absorbed silicon is retained by the
body as Si is present in all tissues. In addition fasting serum Si
concentration is increased with Si supplementation in rats and
humans and in the rat bone Si level correlates with dietary Si
intake (Jugdaohsingh et al., unpublished data). Tissue levels
however vary. In the rat highest levels are found in bone and
other connective tissues such as, skin, nail, hair, trachea,
tendons and aorta and very much less (10-20 fold less) in soft
tissues (19; Jugdaohsingh et al., unpublished data). A similar
tissue Si distribution is expected in humans, although this has
not been investigated. Silicon is suggested to be integrally
bound to connective tissues and their components and to have
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an important structural role (82) as silicon deprivation studies
have reported detrimental effects on these tissues (16,17) as is
also speculated to occur with normal ageing with the decline in
tissue Si levels. Vice versa, silicon supplementation has been
reported to have beneficial effects on these tissues especially
bone where much of current work has concentrated (36,48,54-
56, 83-86). The potential importance of Si to bone health is
discussed below.

Essentiality

Circumstantial evidence for the essentiality of silicon in
animals (see below) and the presence of silica in most cells and
in primitive organisms such as bacteria, viruses and fungi
suggests that it may have a desirable or even an essential
biological role in all organisms (16, 22). For some primitive
organisms, such as diatoms, other algae, and sponges silicon is
essential for survival and replication and so is actively taken-up
and transported from the low levels in their environment
(natural waters) (22, 26, 87-90). Similarly, silicon is also
essential in some plants, namely rice, oats, barley, maize,
cucumber, tobacco and tomatoes, as silicon deficiency reduces
their growth and vice versa, addition of silicon improves
growth and guards against attack by pathogens (22, 91). 

Silicon deprivation experiments in the 1970’s, in growing
chicks (17) and rats (16), suggested that silica may also be
essential for normal growth and development in higher animals,
including humans, primarily in the formation of bone and
connective tissues. However, these results have not been
subsequently replicated, at least to the same magnitude and thus
the essentiality of Si in higher animals remains questionable. It

is however the most ubiquitous of all trace elements (92) and is
present in blood at concentrations similar to physiologically
important elements such as iron, copper and zinc (93) and is
excreted in urine in similar orders of magnitude to calcium, one
of the most important cell signalling molecules and major bone
mineral, prompting suggestions that Si may have an important
if not essential (biological) role. 

Silicon and bone health

There is perhaps no question that silicon appears to have a
beneficial role in bone formation and in bone health. Since the
findings of Carlisle (17) and Schwarz & Milne (16) of a
potential role of silicon in bone and connective tissues, there
have been numerous studies over the past 30 years investigating
this potential role of dietary silicon. A brief summary of the
accumulated evidence is given below; see also Tables 4-6.

Dietary silicon intake and BMD
As mentioned above, the main and most important source of

exposure to silicon is from the diet and recently two cross-
sectional epidemiological studies from our group have reported
that dietary silicon intake is associated with higher bone
mineral density (BMD). In the Framingham Offspring cohort
we reported that higher intake of dietary silicon was
significantly positively associated with BMD at the hip sites of
men and pre-menopausal women, but not in post-menopausal
women (36). This study was repeated using the APOSS
(Aberdeen Prospective Osteoporosis Screening Study) cohort, a
women only cohort, and it similarly showed that dietary silicon
intake was significantly positively associated with BMD at the
hip and spine of pre-menopausal women. We also showed a
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Table 4
Effect of dietary silicon on bone health; human studies

Studies Methods Study findings

Silicon supplementation
Schiano et al. (83) Osteoporotic subjects; oral,  5.5 mg/d x 20 d/mo for 3 mo ↑ trabecular bone volume

(n=14) & im, 16.5 mg/wk for 4 mo (n=16)
Eisinger & Clairet (84) Osteoporotic females (n=8); im, 100 mg/wk for 4 mo ↑ femoral BMD (4.7 ± 6.3%) >> sodium 

fluoride and Etidronate
Reffitt et al., (unpub. 2002) Females with low bone mass (n=6); oral,  28 mg Si/d for 12 wk ↑ spine BMD (2.5%)
Spector et al. (56) Females with low bone mass (n=114); oral, 0, 3, 6 & 12 mg Si/d Trend for ↑ bone formation markers with 

as ch-OSA + Ca (1 g/d) & Vit D3 (800 IU) increasing Si dose & significant ↑ femoral
BMD with 6 mg/d

Epidemiological Studies
Jugdaohsingh et al. (36) Cross-sectional study of the Framingham Offspring cohort, Higher hip BMD with higher Si intake in 

(Framingham, MA, USA); 1251 men & 1596 women men, pre-menopausal women, but not post-
(306 pre-menopausal). menopausal women

Macdonald et al. (94) Cross-sectional study of the Aberdeen Prospective Si intake is positively associated with BMD 
Osteoporosis Screening Study (APOSS, UK); 3199 at the spine and significantly at femur in
pre-menopausal & early post-menopausal women. pre-menopausal women and post-

menopausal women currently taking HRT

↑ = increase; ch-OSA = choline stabilized orthosilicic acid; im= intramuscular injection



similar correlation in post-menopausal women but only in those
currently on hormone replacement therapy (HRT) (94). A
weaker (non-significant) correlation was found in past-HRT
users and no correlation in those who had never taken HRT.
These two studies suggest that higher silicon intake is
associated with higher BMD, a marker of bone strength, and
also, a potential interaction between silicon and oestrogen
status. 

No silicon deprivation studies have been conducted in
humans, but, as described above, in laboratory animals Si
deprivation resulted in skeletal abnormalities and defects. In
chicks, legs and beaks were paler, thinner, more flexible and
thus easily fractured (17). In rats, defects to the skull including
the eye sockets was reported as was disturbances and
impairment to incisor enamel pigmentation (16). More recent
studies by Seaborn and Nielsen (95-100) (see Table 5) and
others have not been able to reproduce these dramatic effects
but have reported decreases in BMD, mineral content and
collagen synthesis, and increases in collagen breakdown, thus
confirming Si deprivation has a negative impact on bone.

Silicon supplementation
In osteoporotic subjects silicon supplementation with

monomethyl trisilanol resulted in increased bone volume (83)

and increases in femoral and lumbar spine BMD (84) (Table 4).
In the latter study, silicon was shown to be more effective than
Etidronate (a bisphosphonate) and sodium fluoride. A more
recent study by Spector et al (56) in osteopenic and
osteoporotic subjects, using choline-stabilised orthosilicic acid
(ch-OSA), reported a trend for increased bone formation
markers in serum, especially PINP (pro-collagen type I N-
terminal propeptide) a marker type I collagen synthesis, with
increasing dose of ch-OSA. A slight significant increase in
femoral BMD was observed with the mid ch-OSA dose (6 mg
Si/d). 

Similarly in ovariectomised rats, supplementation with
silicon or ch-OSA reduced bone resorption and bone loss and
increased bone formation and bone mineral content or BMD
(54,101,102) (Table 5). Results in chickens showed increased
BMD and mechanical strength and in horses (mares) reduced
bone-related injuries with silicon supplementation (103-108). 

In vitro cell culture studies
Numerous cell and tissue culture studies have also been

conducted to determine the mechanisms of silicon’s effect on
bone (Table 6) (109-119). Studies by Carlisle in the early 80’s
using chondrocytes and tibial epiphyses from chick embryos
reported that silicon increased bone matrix synthesis (non-
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Table 5
Effect of dietary silicon on bone health; studies in laboratory animals

Studies Methods Study findings

Rats
Low silicon Diets
Seaborn & Nielsen (95-97) - Si vs. +Si (25-50 µg/g diet) ↓: body wt, skeletal Ca, tibial BMD, formation markers, plasma & 

bone Si
Seaborn & Nielsen (98,99) - Si vs. +Si (10 & 35 µg/g diet) ↓: body wt, mineral content (femur, tibia & vertebrae), 

hydroxyproline conent of tibia
Nielsen & Poellot (100) - Si vs. +Si (35 µg/g diet) ↑: bone resorption

Ovariectomy & Si Supplementation
Hott et al. (101) OVX + Si (120 µg/kg Bwt) ↓ osteoclast surface area (SA), ↑ osteoblast SA & MAR, ↓ bone 

loss, ↑ bone vol
Rico et al. (102) OVX + Si (500 µg/g feed) ↑: body wt, longitudinal growth of femur, mineral content of femur

& 5th vertebrae
Calomme et al. (54) OVX + ch-OSA (1 mg Si/kg Bwt) ↑: body wt, serum & urine Si, partial increase in BMD at femur 

and lumbar spine
Chickens
Merkley & Miller (103) +Si (75 mg/l in drinking water) stronger tibia & humeri, ↑ ash content of humeri
Roland (104) +Si (0.75% Na aluminosilicate) ↑ egg production
Calomme et al. (105) +Si (135 mg/kg Bwt/2 d) as ch-OSA ↑ serum Ca, total BMC (8%), BMD: midshaft (4%), distal 

metaphysis (5%), hip (6%)
Horses
Nielsen et al. (106) +Si ↓ bone related injuries in quarter horses
Lang et al. (107) +Si (0.22 kg/d) ↑ serum & milk Si levels, ↑osteocalcin, ↓ collagen breakdown

Calves
Calomme & Vanden Berghe (108) +Si (<5% Si as ch-OSA) ↑: serum Si, skin hydroxyproline content

-Si = Si deficient diet; +Si = Si supplementation; OVX = ovariectomy; Bwt = body weight, ch-OSA = choline stabilized orthosilicic acid; BMC = bone mineral content; BMD = bone
mineral density; SA= surface area; MAR= mineral apposition rate ↑ = increase; ↓ = decrease



collagenous matrix polysaccharides and collagen) and that Si
dose dependently increased prolyl hydroxylase activity, the
enzyme involved in collagen synthesis (109-114). Recent
studies with human osteoblast cells and zeolite A, an acid labile
aluminosilicate, reported increased osteoblast proliferation,
extracellular matrix synthesis, alkaline phosphatase (ALP)
activity and osteocalcin synthesis (115-117). More recent
studies using orthosilicic acid have also reported increases in
type I collagen synthesis and cellular differentiation (118) and
in addition increases in the mRNA of these proteins, suggesting
potential involvement of Si in gene transcription (118, 119). 

Thus tissue and cell culture studies have also suggested that
silicon is involved in bone formation by increasing matrix
synthesis and differentiation of osteoblast cells. Effects of
silicon on bone resorption and osteoclast cell activity has not
been well studied. Schutze et al (120) reported that zeolite A,
but not separately its individual components (Si and Al),
inhibited osteoclast activity (pit number and cathepsin B
enzyme activity). 

Bone implants and cements
Additional evidence of the involvement of silicon in bone is

provided by in vivo and in vitro studies with silicon-containing

implants and ceramics such as Si-substituted hydroxyapatites
and BioglassTM. Such materials have been shown to bond much
better to bone than their non-silicon-containing counterparts
due to the spontaneous formation of a biologically active
apatite-like layer on their surface (121). Silica on these
materials is said to undergo partial dissolution to form an
amorphous Si layer and the dissolved Si has been implicated
for the in vivo efficacy of these implants as it has been shown
to be involved in gene upregulation, osteoblast proliferation and
differentiation, type I collagen synthesis and apatite formation.
One recent paper reported more ordered collagen fibrils and
mature bone formation with Si-substituted hydroxyapatite
(122).

Mechanisms
Mechanisms are not clear but it has been suggested, based

on the evidence above, that silicon is involved in bone
formation through the synthesis and/or stabilization of collagen.
Collagen has an important structural role in animals
contributing to the architecture and resilience of bone and
connective tissue. It is the most abundant protein in bone matrix
conferring flexibility and, with elastin, is a major component of
connective tissues which is found in skin, cartilage, tendons and
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Table 6
Effect of dietary silicon on bone health: tissue and osteoblast cell culture studies

Studies Methods Study findings

Chick Embryos
Carlisle & Alpenfels (109) Paired frontal bones (low (6.6 µM) ↑: dry weight (23%); collagen (43%), calcium content (14%),  bone

vs 2.2 mM for 12 d) matrix polysaccharide (60%; d 8)
Carlisle & Alpenfels (110) Paired proximal & distal tibial ↑: dry weight (42%; d 8); collagen (60%; d 8) vs ↓ in low Si group,

cartilaginous epiphyses (12 d) ↑ matrix polysaccharides (63-140%)
Carlisle & Garvey (111) Chondrocytes from epiphyses (18 d) ↑: procollagen hydroxyproline (243%), matrix polysaccharide 

(152%)  – not due to cell proliferation
Carlisle & Suchil (112) Paired tibial cartilaginous epiphyses ↑: dry weight (44%), cartilage (400%; d8), hexosamine, proline,

(12 d) hydroxyproline & non-collagenous protein
Carlisle & Alpenfels (113) Paired tibial cartilaginous epiphyses ↑: proline synthesis (11-16 fold) with Si, 

(12 d) ↓:  proline and hydroxyproline synthesis in low Si
Carlisle et al. (114) Prolyl hydroxylase from frontal bones dose dependent increase in activity (5-10 fold)

(0.2, 0.5 & 2 mM Si; 8 d)
Human Osteoblast Cells
Brady et al. (115) From trabecular bone & MG-63 cell ↑: Cell proliferation (124-270%), ALP activity (144-310%)

line (Zeolite A; 0.1-100 µg/ml)
Mills et al. (116) Zeolite A ↑: Cell proliferation & extra cellular matrix
Keeting et al. (117) From trabecular bone (Zeolite A; ↑: Cell proliferation (62%), ALP (50-100%), osteocalcin (100%)

0.1-100 µg/ml)
Reffitt et al., (118) Cell lines (MG-63 & HCC1),  bone ↑: type I collagen (40-80%), ALP activity (40%),

marrow aspirates & dermal fibroblasts osteocalcin (40%), ALP mRNA & osteocalcin mRNA
(10-50 µM Si as OSA; 3 d)

Arumugam et al. (119) Osteoblast cells extracted from ↑: mRNA type I collagen (2-2.5 fold)
trabecular bone (5-50 µM Si as OSA; 
20 h)

↑ = increase; ↓ = decrease; ALP= alkaline phosphatase



arteries, for example. High levels of Si were found to be
strongly bound to connective tissues and its components,
namely glycoaminoglycans, polysaccharides and
mucopolysaccharides (82) implying an integral role for Si.
Quite how Si may be involved in collagen synthesis and or its
stabilisation is still not established. It has been implicated in
gene transcription of type I collagen gene, a cofactor for prolyl
hydroxylase the enzyme involved in collagen synthesis, in the
utilisation (i.e. gastrointestinal uptake and metabolism) of
essential elements that are required for bone and collagen
synthesis, such as copper (123), calcium and magnesium and in
the scavenging and detoxifying toxic aluminium. Silicon has
also been found at the mineralisation front of growing bone
(18) suggesting also an involvement in early
calcification/mineralization of bone matrix.

Toxicity

The toxicity associated with the inhalation of particulate
crystalline silica and silicates, such as quartz, and man-made
fibrous silicates (e.g. asbestos) has been extensively studied as
long-term exposure causes scarring of the lung, that may lead to
reduced lung capacity, lung cancer, and the increased risk of
tuberculosis and heart complications. These crystalline silicates
are phagocytosed by macrophages that then release cytokines
that attract and stimulate other immune cells including
fibroblasts, which are responsible for the excessive production
of collagen (fibrotic tissue) that is characteristic of silicosis
(22). 

Oral ingestion of crystalline or amorphous silica/silicates in
the diet may also cause toxicity. The inflorescences of Steria
italica (millet) promotes oesophageal cancer, while the seeds of
the Phalaris family of grass (e.g. canary grass, Phalaris
canariensis) promote skin tumours (42, 124, 125). Finely
ground silicate minerals from eroded acid granite in drinking
water has been linked to ‘Endemic or Balkan Nephropathy’,
which is inflammation of the kidneys (interstitial nephritis),
found in confine parts of the Balkans (Yugoslavia, Bulgaria and
Romania) (63). Long-term use of high doses of silicate
containing drugs, such as analgesics and antacids (magnesium
trisilicates) could cause damage to the renal kidney tubules and
lead to chronic interstitial nephritis (63). As noted previously,
the high levels of silica in these drugs can lead to the formation
of renal stones/calculi which are responsible for kidney
damage. Formation of silica stones/calculi (urolithiasis) is also
a common problem in cattle and sheep who ingest large
quantities of silica daily, since grass consists of 2% silica by
weight, and drink very little water (22, 37). However, ingestion
of amorphous silica is not associated with toxicity in the rat
(33).

Chronic haemodialysis patients are potentially at risk from
the accumulation of silicon (73, 75, 81). The high silicon levels
of these patients have been associated with nephropathy,
neuropathy, chest disease, bone diseases and liver disease (73,

75, 81).
However for much of the population with normal renal

function the normal intake of dietary silicon from foods and
water has not been associated with any known toxicity (33).
There are no known symptoms or diseases of silicon excess or
deficiency in humans.  

Conclusion

Silicon is a major (naturally occurring) trace element in the
human body derived predominantly from the diet. The intake
and metabolism of which has only recently been determined.
We ingest between 20-50 mg/day in the Western world, greater
than two-fold our intake of iron and zinc and it is excreted in
similar magnitude to calcium, suggesting more than a role as a
‘ubiquitous contaminant’. Indeed accumulated evidence over
the last 30 years suggests an important role in bone formation
and bone and connective tissue health. Mechanisms are unclear
but evidence exists of its involvement in collagen synthesis
and/or its stabilization and in matrix mineralization. However
much still remains to be understood on this potential biological
role of silicon. Whether silicon has an essential role in man, as
it has in lower animals also remains to be established.
Establishment of a biological role for this element will have
important implication for nutrition as a preventative measure,
or Si containing supplements as a treatment, for bone and
connective tissue diseases. 
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